Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Lancet Public Health ; 8(3): e174-e183, 2023 03.
Article in English | MEDLINE | ID: covidwho-2231236

ABSTRACT

BACKGROUND: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3 weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the SARS-CoV-2 alpha variant prompted the UK to extend the interval between doses to 12 weeks. In this study, we aimed to quantify the effect of delaying the second vaccine dose in England. METHODS: We used a previously described model of SARS-CoV-2 transmission, calibrated to COVID-19 surveillance data from England, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data, using a Bayesian evidence-synthesis framework. We modelled and compared the epidemic trajectory in the counterfactual scenario in which vaccine doses were administered 3 weeks apart against the real reported vaccine roll-out schedule of 12 weeks. We estimated and compared the resulting numbers of daily infections, hospital admissions, and deaths. In sensitivity analyses, we investigated scenarios spanning a range of vaccine effectiveness and waning assumptions. FINDINGS: In the period from Dec 8, 2020, to Sept 13, 2021, the number of individuals who received a first vaccine dose was higher under the 12-week strategy than the 3-week strategy. For this period, we estimated that delaying the interval between the first and second COVID-19 vaccine doses from 3 to 12 weeks averted a median (calculated as the median of the posterior sample) of 58 000 COVID-19 hospital admissions (291 000 cumulative hospitalisations [95% credible interval 275 000-319 000] under the 3-week strategy vs 233 000 [229 000-238 000] under the 12-week strategy) and 10 100 deaths (64 800 deaths [60 200-68 900] vs 54 700 [52 800-55 600]). Similarly, we estimated that the 3-week strategy would have resulted in more infections compared with the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. In results by age group, the 12-week strategy led to more hospitalisations and deaths in older people in spring 2021, but fewer following the emergence of the delta variant during summer 2021. INTERPRETATION: England's delayed-second-dose vaccination strategy was informed by early real-world data on vaccine effectiveness in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single-dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths overall. FUNDING: UK National Institute for Health Research; UK Medical Research Council; Community Jameel; Wellcome Trust; UK Foreign, Commonwealth and Development Office; Australian National Health and Medical Research Council; and EU.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aged , Infant , Bayes Theorem , Seroepidemiologic Studies , Australia , SARS-CoV-2 , England
2.
Commun Med (Lond) ; 2: 14, 2022.
Article in English | MEDLINE | ID: covidwho-1860428

ABSTRACT

Background: Vaccine hesitancy - a delay in acceptance or refusal of vaccines despite availability - has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally. In this study, we aim to understand the likely impact of vaccine hesitancy on the control of the COVID-19 pandemic. Methods: We modelled the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission with data on vaccine hesitancy from population surveys. Results: Our simulations suggest that the mortality over a 2-year period could be up to 7.6 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Conclusions: While vaccination is an individual choice, vaccine-hesitant individuals have a substantial impact on the pandemic trajectory, which may challenge current efforts to control COVID-19. In order to prevent such outcomes, addressing vaccine hesitancy with behavioural interventions is an important priority in the control of the COVID-19 pandemic.

3.
Appl Health Econ Health Policy ; 19(5): 673-697, 2021 09.
Article in English | MEDLINE | ID: covidwho-1269032

ABSTRACT

BACKGROUND: Non-pharmaceutical interventions (NPIs) are the cornerstone of infectious disease outbreak response in the absence of effective pharmaceutical interventions. Outbreak strategies often involve combinations of NPIs that may change according to disease prevalence and population response. Little is known with regard to how costly each NPI is to implement. This information is essential to inform policy decisions for outbreak response. OBJECTIVE: To address this gap in existing literature, we conducted a systematic review on outbreak costings and simulation studies related to a number of NPI strategies, including isolating infected individuals, contact tracing and quarantine, and school closures. METHODS: Our search covered the MEDLINE and EMBASE databases, studies published between 1990 and 24 March 2020 were included. We included studies containing cost data for our NPIs of interest in pandemic, epidemic, and outbreak response scenarios. RESULTS: We identified 61 relevant studies. There was substantial heterogeneity in the cost components recorded for NPIs in outbreak costing studies. The direct costs of NPIs for which costing studies existed also ranged widely: isolating infected individuals per case: US$141.18 to US$1042.68 (2020 values), tracing and quarantine of contacts per contact: US$40.73 to US$93.59, social distancing: US$33.76 to US$167.92, personal protection and hygiene: US$0.15 to US$895.60. CONCLUSION: While there are gaps and heterogeneity in available cost data, the findings of this review and the collated cost database serve as an important resource for evidence-based decision-making for estimating costs pertaining to NPI implementation in future outbreak response policies.


Subject(s)
COVID-19 , Disease Outbreaks , Humans , Pandemics , Physical Distancing , Quarantine
4.
Vaccine ; 39(22): 2995-3006, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1174521

ABSTRACT

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extend a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identify optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We find that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for < 20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.


Subject(s)
COVID-19 , Vaccines , Aged , COVID-19 Vaccines , Humans , Models, Theoretical , Public Health , SARS-CoV-2 , Vaccination
5.
2020.
Non-conventional in English | Homeland Security Digital Library | ID: grc-740921

ABSTRACT

From the Introduction: The course of the COVID-19 [coronavirus disease 2019] epidemic in Low- and Middle-Income Countries (LMICs) will be determined by the actions that countries take in the coming weeks and months. It is clear that actions taken to reduce the size of the epidemic, delay, or flatten its peak, could lead to substantial reductions in deaths if doing so allows more patients with severe conditions to benefit from supportive care in hospital. However, the impact of the COVID-19 epidemic and actions taken in response to it will have far reaching consequences - including on other diseases, poverty, food security and economic growth - and consideration of these will have a strong bearing on the range of responses that are taken. Here we aim to provide information on just one of these aspects - the potential impact of the COVID19 epidemic on three other major health priorities;specifically, Human Immunodeficiency Virus (HIV), Tuberculosis (TB) and malaria.COVID-19 (Disease);Epidemics;Malaria;HIV infections;Tuberculosis

6.
2020.
Non-conventional in English | Homeland Security Digital Library | ID: grc-740304

ABSTRACT

From the Summary: The COVID-19 [coronavirus disease 2019] pandemic is likely to severely interrupt health systems in Sub-Saharan Africa (SSA) over the coming weeks and months. Approximately 90% of malaria deaths occur in this region of the world, with an estimated 380,000 deaths from malaria in 2018. Much of the gain made in malaria control over the last decade has been due to the distribution of long-lasting insecticide treated nets (LLINs). Many SSA countries planned to distribute these in 2020. We used COVID-19 and malaria transmission models to understand the likely impact that disruption to these distributions, alongside other core health services, could have on the malaria burden. Results indicate that if all malaria-control activities are highly disrupted then the malaria burden in 2020 could more than double that in the previous year, resulting in large malaria epidemics across the region. These will depend on the course of the COVID-19 epidemic and how it interrupts local health system. Our results also demonstrate that it is essential to prioritise the LLIN distributions either before or as soon as possible into local COVID-19 epidemics to mitigate this risk. Additional planning to ensure other malaria prevention activities are continued where possible, alongside planning to ensure basic access to antimalarial treatment, will further minimise the risk of substantial additional malaria mortality.COVID-19 (Disease);Epidemics;Mortality;Malaria

7.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Article in English | MEDLINE | ID: covidwho-641159

ABSTRACT

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Subject(s)
Coronavirus Infections/epidemiology , Developing Countries , HIV Infections/prevention & control , Health Services Accessibility , Malaria/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis/prevention & control , COVID-19 , HIV Infections/epidemiology , HIV Infections/mortality , Humans , Malaria/epidemiology , Malaria/mortality , Models, Theoretical , Tuberculosis/epidemiology , Tuberculosis/mortality
8.
Nat Med ; 26(9): 1411-1416, 2020 09.
Article in English | MEDLINE | ID: covidwho-707103

ABSTRACT

The burden of malaria is heavily concentrated in sub-Saharan Africa (SSA) where cases and deaths associated with COVID-19 are rising1. In response, countries are implementing societal measures aimed at curtailing transmission of SARS-CoV-22,3. Despite these measures, the COVID-19 epidemic could still result in millions of deaths as local health facilities become overwhelmed4. Advances in malaria control this century have been largely due to distribution of long-lasting insecticidal nets (LLINs)5, with many SSA countries having planned campaigns for 2020. In the present study, we use COVID-19 and malaria transmission models to estimate the impact of disruption of malaria prevention activities and other core health services under four different COVID-19 epidemic scenarios. If activities are halted, the malaria burden in 2020 could be more than double that of 2019. In Nigeria alone, reducing case management for 6 months and delaying LLIN campaigns could result in 81,000 (44,000-119,000) additional deaths. Mitigating these negative impacts is achievable, and LLIN distributions in particular should be prioritized alongside access to antimalarial treatments to prevent substantial malaria epidemics.


Subject(s)
Antimalarials/therapeutic use , Coronavirus Infections/epidemiology , Malaria/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/parasitology , Coronavirus Infections/virology , Humans , Insecticides/therapeutic use , Malaria/complications , Malaria/parasitology , Malaria/virology , Mosquito Control , Pneumonia, Viral/complications , Pneumonia, Viral/parasitology , Pneumonia, Viral/virology , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL